News

Rapid genome editing by CRISPR-Cas9-POLD3 fusion

We are delighted to present our newest article, “Rapid genome editing by CRISPR-Cas9-POLD3 fusion”, published in eLife in December 2021.

Abstract

Precision CRISPR gene editing relies on the cellular homology-directed DNA repair (HDR) to introduce custom DNA sequences to target sites. The HDR editing efficiency varies between cell types and genomic sites, and the sources of this variation are incompletely understood.

Here, we have studied the effect of 450 DNA repair protein-Cas9 fusions on CRISPR genome editing outcomes. We find the majority of fusions to improve precision genome editing only modestly in a locus- and cell-type specific manner.

We identify Cas9-POLD3 fusion that enhances editing by speeding up the initiation of DNA repair. We conclude that while DNA repair protein fusions to Cas9 can improve HDR CRISPR editing, most need to be optimized to the cell type and genomic site, highlighting the diversity of factors contributing to locus-specific genome editing outcomes.

Rapid Genome Editing

Latest news

January team changes

Thapelo is back with us to work on his master’s thesis, and Carolina has joined the team as our new PhD student. Welcome!

We’ve won the European Genomics Grant

We’ve won the European Genomics Grant from Standard BioTools! As the prize we will have the C1 system from Standard BioTools™ installed in our laboratory.