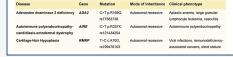


CRISPR-Cas9 T cell editing pipeline for Finnish founder diseases

Katariina Mamia¹, Zhuokun Li¹, Ganna Reint¹, Nail Fatkhutdinov¹, Frida Høsøjen Haugen¹, Thea Johanne Gierdingen², Payel Kopcil¹, Monika Szymanska¹, Kornel Labun³, Eivind Valen³, Janna Saarela ^{1,4}, Johanna Olweus², Emma Haapaniemi¹


¹Centre for Molecular Medicine Norway (NCMM). University of Oslo. ²Oslo University Hospital. ³University of Bergen, Norway, ⁴Institute for Molecular Medicine Finland (FIMM)

Streamline CRISPR-Cas9 tool selection in expanded patient T cells

Background

- Protocols for T cell correction & expansion from small blood volumes are useful in pediatric hematology studies and future immunotherapy development
- · We used three Finnish founder diseases as models for protocol development for CRISRP-Cas9 applications:

Conclusions

- Efficient T cell correction, enrichment & expansion from peripheral blood mononuclear cells (PBMC)
- Up to 50% homology-directed repair (HDR) of ADA2, AIRE and RMRP loci
- GUIDE-seq optimized for patient PBMC
- Pipeline applicable for other monogenic immune diseases

Day 1

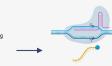
PBMC stimulation with IL-2, IL-7, IL-15, anti-CD3/CD28

Day 4

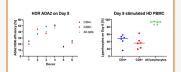
RNP delivery to nucleus by electroporation

Day 5-8

On-target

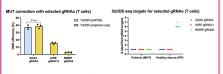


Off-target


GUIDE-seg optimized in T cells

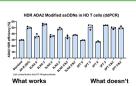
Optimization

HDR improvement


CD4+ CD8+ enrichment

What we learned

- Robust T cell correction and expansion from small PBMC quantities (≥1M initial cells with up to 24X fold exchange by Day 8)
- Cell culture consists of ~90% CD4+ and CD8+ T cells on
 - Uniform editing levels across PBMC cell types Editing efficiency is donor-dependent¹


Off-target profiling by GUIDE-seg & selection of gRNAs

What we learned

- gRNAs selected by screening 7-18 gRNAs per locus qRNA performance correlates between primary T cells.
- fibroblasts and CD34+ stem cells Good correlation between ddPCR and amplicon seq (ADA2)
- Optimized GUIDE-seq2 for quantifying off-target editing in patient

HDR improvement strategies

3' modifications improve Cell cycle timer (AcrIIA2-

- ssODN stability and enhance HDR3 HMGB1 Cas9 fusion
- Cdt1)4 p53 inhibition5 improves editing in T cells4
 - Most Cas9-fusions are
 - cell type and locusspecific4

