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GRAPHICAL ABSTRACT
Background: The nuclear factor k light-chain enhancer of
activated B cells (NF-kB) signaling pathway is a key regulator of
immune responses. Accordingly, mutations in several NF-kB
pathway genes cause immunodeficiency.
Objective: We sought to identify the cause of disease in 3
unrelated Finnish kindreds with variable symptoms of
immunodeficiency and autoinflammation.
Methods: We applied genetic linkage analysis and next-
generation sequencing and functional analyses of NFKB1 and its
mutated alleles.
Results: In all affected subjects we detected novel heterozygous
variants in NFKB1, encoding for p50/p105. Symptoms in variant
carriers differed depending on the mutation. Patients harboring
a p.I553M variant presented with antibody deficiency, infection
susceptibility, and multiorgan autoimmunity. Patients with a
p.H67R substitution had antibody deficiency and experienced
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autoinflammatory episodes, including aphthae, gastrointestinal
disease, febrile attacks, and small-vessel vasculitis characteristic
of Behçet disease. Patients with a p.R157X stop-gain
experienced hyperinflammatory responses to surgery and
showed enhanced inflammasome activation. In functional
analyses the p.R157X variant caused proteasome-dependent
degradation of both the truncated and wild-type proteins,
leading to a dramatic loss of p50/p105. The p.H67R variant
reduced nuclear entry of p50 and showed decreased
transcriptional activity in luciferase reporter assays. The
p.I553M mutation in turn showed no change in p50 function but
exhibited reduced p105 phosphorylation and stability. Affinity
purification mass spectrometry also demonstrated that both
missense variants led to altered protein-protein interactions.
Conclusion: Our findings broaden the scope of phenotypes
caused by mutations in NFKB1 and suggest that a subset of
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Abbreviations used

IkBa: NF-kB inhibitor a

IKK: Inhibitor of kB kinase

NEMO: NF-kB essential modulator

NF-kB: Nuclear factor k light-chain enhancer of activated B cells

NLRP3: NLR family pyrin domain containing 3

WB: Western blotting

WT: Wild-type
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autoinflammatory diseases, such as Behçet disease, can be
caused by rare monogenic variants in genes of the NF-kB
pathway. (J Allergy Clin Immunol 2017;140:782-96.)

Key words: Nuclear factor k light-chain enhancer of activated B
cells, hypogammaglobulinemia, autoinflammation, Behçet disease,
NFKB1, p50, p105, B cell

The nuclear factor k light-chain enhancer of activated B cells
(NF-kB) pathway regulates many cellular processes, such as
proliferation, apoptosis, stress responses, inflammation, ecto-
dermal development, and immune responses.1,2 As such, NF-kB
signaling plays a key role in inflammatory diseases, andmutations
in several NF-kB components cause primary immunodeficiency
or ectodermal dysplasia.3-11

The NF-kB transcription factor family consists of 5 Rel
proteins, p50/p105, p52/p100, RelA, RelB, and c-Rel, which
dimerize with each other and drive or inhibit gene expression in
the nucleus.12 The canonical NF-kB pathway is triggered by mi-
crobial products or the cytokines IL-1b and TNF and progresses
through phosphorylation-dependent degradation of NF-kB inhib-
itor a (IkBa). IkBa phosphorylation is mediated by the inhibitor
of kB kinase (IKK) complex, which includes IKKa and IKKb
and the regulatory protein NF-kB essential modulator (NEMO).
This releases RelA- and c-Rel–containing dimers to enter the nu-
cleus and drive transcription of proinflammatory genes.13

NFKB1 encodes for p105, which is processed by the protea-
some to generate the p50 transcription factor. p50 can heterodi-
merize with RelA or c-Rel and activate canonical NF-kB
signaling or form homodimers that function as repressors of
proinflammatory gene expression.14,15 The full-length p105 in-
hibits NF-kB signaling by binding to and inhibiting nuclear entry
of RelA, c-Rel, and p50 through ankyrin repeats in the C-terminal
half of the protein.16,17

Recently, haploinsufficiency of p50 was shown to cause
antibody deficiency.3 Common variants in NFKB1 also associate
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with inflammatory bowel disease and Behçet disease, a vasculitis
of largely unknown cause characterized by recurrent oral and gen-
ital aphthous ulcers, uveitis, and skin lesions.18-22 Here we
describe heterozygous NFKB1 mutations (H67R, p.R157X, and
I553M) in 3 Finnish kindreds that variably display dominantly
segregating antibody deficiency, recurrent infections, and autoin-
flammatory features, including Behçet-like disease and hyperin-
flammatory reactions. Our results show that disease can ensue
from dysregulation of NF-kB signaling caused by mutations
affecting either p50 or p105.
METHODS

Study participants
The study was conducted in accordance with the principles of the Helsinki

Declaration and was approved by the Helsinki University Central Hospital

Ethics Committee. Written informed consent was obtained from patients and

healthy control subjects.
DNA extraction and genetic analysis
Genomic DNA was extracted from EDTA blood samples by using the

Qiagen FlexiGene DNA kit (Qiagen, Hilden, Germany). HLA-B*51 typing

was performed in an accredited (European Federation for Immunogenetics)

histocompatibility testing laboratory, the Finnish Red Cross Blood Service.
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FIG 1. Phenotypic characteristics of families with newly identified NFKB1 mutations. A, Pedigrees of the

studied families with NFKB1 mutations. Patients with clinical diagnosis are highlighted. *Subject with a

low IgG level but without a clinical diagnosis potentially caused by young age. 1/1, Absence of mutation;

M/1, presence of the familial NFKB1 mutation. B, Summary of common clinical findings in the 3 families

with NFKB1mutations. C,Multiple esophageal aphthae (circled) in patient F1.III-3. D and E, Genital aphthae

(Fig 1, D) and arteriole (Fig 1, E) with fibrinoid necrosis and lymphocytic infiltrate, suggesting small-vessel

vasculitis (white arrow) in patient F1.III-8. Pictures were provided by the Dermatology and Venereology

Outpatient Clinic, University Hospital of Tampere. F, Tissue damage in patient F3.II-1 after inflammatory re-

action to surgery.
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Generation and processing of sequencing libraries, read mapping, variant

calling, genome annotation, and variant filtering, as well as genotyping and

linkage analysis, are described elsewhere23 or in the Methods section and Fig

E1 in this article’s Online Repository at www.jacionline.org. Mutations and

their expression were verified from genomic and cDNA by means of capillary

sequencing. Primers (Sigma-Aldrich, St Louis, Mo) are listed in Table E1 in

this article’s Online Repository at www.jacionline.org.
Computational modeling
Modeling ofmutant amino acid residue effects was performedwith the Coot

single-mutation option (version 0.8.1, http://scripts.iucr.org/cgi-bin/paper?

S0907444904019158)24 and PyMol (Schr€odinger). Crystallographic images

were downloaded from the RCSB Protein Data Bank (www.rcsb.org).25
Experiments on patient-derived cells
PBMCs were isolated from patients’ blood by using Ficoll-Paque

gradient centrifugation. Whole protein was extracted by means of cell

lysis in RIPA buffer, and expression of p50/p105 and RelA was detected

by means of Western blotting (WB) with anti-p50/p105 and RelA

antibodies (nos. 3035 and 8242, respectively; Cell Signaling Technology,

Danvers, Mass). Glyceraldehyde-3-phosphate dehydrogenase antibody
(no. 258; Thermo Fisher Scientific, Waltham, Mass) was used as a loading

control. IRDye 800CW and 680LT secondary antibodies were used for

signal detection with the Odyssey CLx Imaging System (LI-COR Bio-

sciences, Lincoln, Neb). Lymphocyte immunophenotyping, inflammasome

activation, and ELISAs are described in the Methods section in this

article’s Online Repository.
Generation of mutation constructs and cell lines
The wild-type (WT), H67R, and I553M mutant NFKB1 full-length cod-

ing sequences were commercially cloned into a Gateway-compatible entry-

vector (GenScript, Piscataway, NJ). R157X and A156S mutations were

generated by using PCR from the WT template. For transient and stable

expression, constructs were subcloned into the pcDNA-DEST40 expression

Vector (Thermo Fisher Scientific) and pTO_HA_StrepIII_N_GW_FRT

(SH-tag) or pTO_Myc_BirA_N_GW_FRT (BioID) vectors, respectively.26

Constructs were transfected into Flp-In T-REx 293 cells to generate

tetracycline-inducible isogenic cell lines (Life Technologies, Grand Island,

NY).27 Construct expression on tetracycline induction (2 mg/mL) was

confirmed by means of mass spectrometry and WB with anti-p50/p105

and anti-hemagglutinin (HA.11; Covance, Princeton, NJ) antibodies.

a-Tubulin antibody (ab7291; Abcam, Cambridge, United Kingdom) was

used as a loading control.

http://www.jacionline.org
http://www.jacionline.org
http://scripts.iucr.org/cgi-bin/paper?S0907444904019158
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Proteasome inhibition
Tetracycline-induced (2 mg/mL for 20 hours) WT and R157X-p50/p105-

Flp-In T-REx 293 cells were treated with the proteasome inhibitor MG132

(474790;MerckMillipore, Billerica,Mass) for 4 hours in 0, 5, 10, or 20mmol/L

concentrations. Cells were lysed, and p50/p105 levels were assessed by

using WB.

Luciferase reporter assays
Tetracycline-treated p50/p105-Flp-In cells were transfected (on 96-well

plates in triplicate) with a p50:RelA-responsive firefly luciferase reporter

plasmid28 and a constitutively expressed pRL-TK Renilla luciferase control

reporter using FuGENEHD (Promega, Madison, Wis). For transient transfec-

tions, HEK293 cells were cotransfected with the reporters and pcDNA-

DEST40-p50/p105 vectors. Signaling was activated with TNF (10 or 25 ng/

mL for 16 hours). Luminescence was measured with the Dual-Glo Luciferase

Assay System (Promega) and PHERAstar Plate Reader (BMG Labtech, Or-

tenberg, Germany). The NF-kB/control plasmid signal ratio was calculated

to account for differences in cell numbers, and these data were normalized

to the uninduced WT sample. Results were pooled from 2 to 4 repeats of

each assay. The t test was used to calculate P values.

Immunofluorescence assay
The p50/p105-Flp-In cell lines were seeded on coverslips coated with rat-

tail collagen (Thermo Fisher Scientific). Tetracycline-treated cells were

induced with TNF (10 or 25 ng/mL for 40 minutes), fixed in paraformalde-

hyde, and blocked with 1% BSA-PBS (Sigma-Aldrich). The HA.11 antibody

was used for detection of tagged p50/p105 with anti-mouse Alexa Fluor 488

(A-11029, Life Technologies) secondary antibody. Nuclei were stained with

49-6-diamidino-2-phenylindole (D9542-5MG, Sigma-Aldrich). Imaging was

performed at340magnificationwith theAxio Imager.Z2 (Zeiss, Oberkochen,

Germany) and the Nuance multispectral imaging system FX (PerkinElmer,

Waltham, Mass). ImageJ software (National Institutes of Health, Bethesda,

Md) was used for quantification of signal intensities.29 Three hundred to

600 cells per condition were analyzed.

Affinity purification, BioID, mass spectrometry, and

protein quantification
For each single-step Strep-tag affinity purification and BioID30 experiment,

approximately53107 cells (2biological and technical replicates) from thep50/

p105-Flp-In cellswere inducedwith tetracycline (2mg/mL for 24 hours)with or

without TNF (10 ng/mL for 90 minutes). Cysteine bonds were reduced with

5mmol/LTris(2-carboxyethyl)phosphine and alkylated with 10mmol/L iodoa-

cetamide, and proteins were digested to peptideswith sequencing-grade trypsin

(Promega). Peptides were purified with C-18 MicroSpin Columns (The Nest

Group, Southborough, Mass). After vacuum concentration, dried samples

were dissolved in 30mL of buffer A.27Mass spectrometric analyses of samples

were performed with a 60-minute linear gradient on an Orbitrap Elite ETD

Hybrid Mass Spectrometer coupled to the EASY-nLC II System (Thermo Sci-

entific). Proteins were identified and quantified by using the Andromeda search

engine and MaxQuant proteomics software.31,32 Raw data were searched

against the human component of the UniProtKB-database (release 2014_11).

Results were filtered to a maximum false discovery rate of 0.05. For phospho-

peptide identification, phosphorylation (Ser, Thr, andTyr)was included as avar-

iable modification in MaxQuant/Andromeda. Filtering parameters for 2

accepted phosphopeptides (QMGYTEAIEVIQAASSPVK modified at serine

893 and TTSQAHSLPLSPASTR with 1 or 2 phosphorylations at serines 907

and/or 903) and a more detailed description of the analyses are found in the

Methods section in this article’s Online Repository.

RESULTS

Identification of NFKB1 variants in 3 families with

immunodeficiency and autoinflammation
We studied a cohort of unsolved primary immunodeficiency

cases representing a broad spectrum of immunologic phenotypes
with next-generation sequencing methods to identify the causal
genes. Independent genetic analyses revealed novel heterozygous
NFKB1 variants as the most likely cause of disease in 3 families
from this cohort.

Family 1 included 9 affected subjects who presented with
recurrent respiratory tract infections and progressive B-cell
dysfunction marked by hypogammaglobulinemia, poor antibody
response to anti-pneumococcal vaccines, or decreased switched
memory B-cell counts (Fig 1, A and B; Table I; and see Tables E2-
E5 in this article’s Online Repository at www.jacionline.org).
Recurrent episodes of aphthous mucositis in the upper
gastrointestinal and genital areas, which were sometimes
accompanied by abdominal pain, monoarthritis, or fever with
increased inflammatory markers (peripheral blood leukocytes,
>10 3 106 cells/mL; C-reactive protein, >100 mg/L), were
frequent (Fig 1, C and D, and see Fig E2 in this article’s Online
Repository at www.jacionline.org). Lesional biopsy specimens
from 2 family members revealed lymphocytic small-vessel
vasculitis (Fig 1, E), supporting a clinical diagnosis of Behçet
disease. In 2 affected family members routine surgical procedures
led to a hyperinflammatory state consisting of fever and excessive
inflammation in the wound area.

We performed genotyping and linkage analysis on 10 subjects
from this family to identify regions of interest, followed by
whole-genome sequencing of 2 subjects (F1.III-3 and F1.III-8) to
pinpoint the causative variant. Nonparametric linkage (NPL)
analysis revealed no statistically significant linkage peaks, but
NPL scores of 1.78 to 1.80 were observed on 5 loci on
chromosomes 2, 4, 5, 10, and 19 (see Fig E3 in this article’s On-
line Repository at www.jacionline.org). Haplotype analysis
within the 2 largest peaks identified a 15.4-Mb haplotype between
the single nucleotide polymorphisms rs6811317 and rs4403120
on chromosome 4 and a large haplotype from single nucleotide
polymorphism rs1171096 to the telomere on 19q cosegregating
with the phenotype. In these regions only 1 novel and
heterozygous variant negatively affecting a conserved residue
was identified at residue 67 in the DNA-binding domain of p50
(NFKB1, NM_003998: c.A667G/p.H67R; Fig 2). The histidine
residue in the WT protein is predicted to interact with DNA
through a water molecule, and its transition to arginine likely
abolishes this interaction. Sanger sequencing verified the pres-
ence of the mutation in all affected subjects in the family (see
Fig E4 in this article’s Online Repository at www.jacionline.org).

In family 2 mother and son (F2.II-3 and F2.III-2 in Fig 1) pre-
sented with recurrent respiratory tract and other severe infections,
hypogammaglobulinemia, and poor antibody responses to
polysaccharide vaccines. Both patients had inflammatory
gastrointestinal disease, and the mother experienced multiorgan
autoimmunity with thyroiditis, enteropathy, spondyloarthropathy,
and urticaria. The mother’s father had succumbed to similar
symptoms before the study. We performed whole-exome
sequencing on patient F2.II-3 and filtered the data for novel
heterozygous variants affecting conserved residues. Of 10
surviving variants (see Table E6 in this article’s Online
Repository at www.jacionline.org), a variant in NFKB1
(NM_003998: c.C1659G/p.I553M) was the most attractive based
on known protein functions.33,34 The variant localizes to the
ankyrin repeat region at the C-terminal half of p105 and was
predicted to affect its posttranslational processing and protein-
protein interactions (Fig 2). Sanger sequencing confirmed the
presence of the variant in the affected son of the proband.

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org


TABLE I. Clinical characteristics of study participants

F1.II-1 F1.II-4 F1.III-2 F1.III-3 F1.III-6 F1.III-7

Current age (y) Deceased

at age 39

55 40 37 30 29

Sex M F F M F F

Mutation status NA H67R H67R H67R H67R H67R

Infection susceptibility

Infections URTI URTI — URTI URTI URTI

Antibody deficiency ND IgG

hypogammaglobulinemia

SAD (dg at age 44 y)

IgG subclass

deficiency

SAD (dg at

age 25 y)

IgG hypogamm-

aglobulinemia

SAD (dg at

age 26 y)

IgG subclass

deficiency

SAD (dg at

age 25 y)

—

Switched memory

B cells*

(reference, 6.5-29.2)

— 5Y 2.3Y 1.9Y 2.3Y 3.5Y

Immunoglobulin

replacement therapy

2 1 2 1 1 2

Immune dysregulation

Febrile attacks 1 2 2 1 2 1
Complex aphthae ND Mouth, genitalia — Esophagus Mouth Mouth,

genitalia

Arthritis — Recurrent monoarthritis — — — Recurrent

monoarthritis

Gut disease ND Periodic abdominal

pain, chronic

idiopathic diarrhea

— — — Periodic abdominal

pain

Other ERCP

pancreatitis

— Benign

kidney

tumor

Rudimentary

left kidney

— Keratitis, hyper-

inflammatory

response to

tooth excision

dg, Diagnosis; F, female; M, male; ND, not detected; RTI, respiratory tract infections, including recurrent pneumonia; SAD, specific antibody deficiency; URTI, upper respiratory

tract infections.

*CD271IgD2IgM2 shown as a percentage of total B-cell count. See the Methods section in this article’s Online Repository for detailed laboratory values.

J ALLERGY CLIN IMMUNOL

SEPTEMBER 2017

786 KAUSTIO ET AL
Two affected brothers in family 3 (F3.II-1 and F3.II-5) had
postoperative deep necrotizing cellulitis with abscesses, fever,
neutrophilia, and increased inflammatory markers that required
prolonged intensive care and multiple surgical revisions (Fig 1, A,
B, and F, and see Fig E2). No pathogenic bacteria could be
cultured from the affected sites. Although these patients’ switched
memory B-cell counts were less than the reference range, they
had normal immunoglobulin levels and did not show increased
susceptibility to infection. Analysis of their whole-exome
sequencing data identified a novel stop-gain variant in NFKB1
(NM_003998: c.C936T/p.R157X). Targeted Sanger sequencing
detected this variant also in 2 asymptomatic siblings and their
mother.

Because of Behçet-like symptoms in family 1, all symptomatic
NFKB1 mutation carriers were genotyped for the Behçet syn-
drome–associated HLA B*51:01 allele.22 Several subjects in
family 1 (F1.III-2, F1.IV-1, F1.IV-2, F1.III-3, and F1.III-8)
were found to carry this allele, but carriership did not cosegregate
with Behçet-like symptoms, leaving the significance of this allele
to the phenotype unclear.
Immunologic findings of the NFKB1 mutation

carriers
The participants underwent extensive blood immunophenotyp-

ing, which showed rather wide interindividual variation (see
Tables E2-E5). However, most patients exhibited chronic mild
leukocytosis (9-10 3 109/L), with the affected p.R157X carriers
presenting with very high counts (50-60 3 109/L, with the in-
crease being mostly neutrophils) during inflammatory episodes.
Patients from the first 2 families (p.H67R and p.I553M) were hy-
pogammaglobulinemic or presented with IgG subclass defi-
ciency; additionally, 8 of 9 tested subjects had nonprotective
responses to pneumococcal polysaccharide. Most patients, even
the p.R157X carriers lacking clinical antibody deficiency, had
low switched memory B-cell counts, with a corresponding in-
crease in naive B-cell counts. On examination of T-cell subsets,
we noted low CD41 effector memory T-cell counts and effector
memory RA T-cell counts (CCR72CD45RA2 and
CCR72CD45RA1, respectively), as well as relatively low TH17
memory subsets (CCR61CXCR32CD45RA2) in several pa-
tients. In addition, some (4/8) of the tested patients had moder-
ately increased IFN-g and TNF secretion on T-cell stimulation.
The R157X mutant causes depletion of p50/p105

and excessive production of IL-1b
The effect of NFKB1 mutations on p50/p105 expression was

estimated by using WB of PBMC-derived protein extracts from
patients and age/sex-matched control subjects. Protein amounts
in patients with missense mutations were comparable with those
in control subjects, but patients with the R157X mutation
showed significant depletion of p50, p105, and RelA (Fig 3, A,
and see Fig E5, A and B, in this article’s Online Repository at



F1.III-8 F1.IV-1 F1.IV-2 F2.I-1 F2.II-3 F2.III-2 F3.II-1 F3.II-5

25 10 7 Deceased

at age 78

61 32 62 56

F M F M F M M M

H67R H67R H67R NA I553M I553M R157X R157X

URTI — URTI RTI RTI RTI — —

IgG hypogamm-

aglobulinemia

SAD (dg at

age 13 y)

IgG hypogamm-

aglobulinemia

(dg at age 10 y)

Hypogamma-

globulinemia

(dg at age 3 y)

Hypogamm-

aglobulinemia

Hypogamma-

globulinemia

SAD (dg at

age 36 y)

SAD (dg at

age 18 y)

— —

8 1.7Y 1.7Y — 9.9 2.6Y 5.4Y 3.8Y

1 2 2 2 1 2 2 2

1 2 1 2 2 2 2 2
Mouth, genitalia — Mouth,

esophagus

— — — — —

Recurrent

monoarthritis

— — — Spondyloarthropathy

oligoarthritis

— — —

Periodic abdominal

pain, microscopic

colitis

— Periodic

abdominal

pain

— Chronic idiopathic

diarrhea

Coeliac

disease

— —

— Asthma,

autoimmune

hypothyroiditis

Asthma Postoperative

necrotizing

cellulitis

Postoperative

necrotizing

cellulitis

TABLE I. Continued
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www.jacionline.org). ELISA for active p50 and RelA on patients’
PBMC-derived nuclear protein produced similar results (see Fig
E5, C and D).

Because NF-kB is involved in regulation of the NLR family
pyrin domain containing 3 (NLRP3) inflammasome and exces-
sive inflammasome activation is involved in the pathogenesis of
several autoinflammatory diseases, we compared inflammasome
activation in LPS-primed macrophages derived from patients and
healthy control subjects. After ATP-induced inflammasome
activation, macrophages from patients with the R157X mutation
displayed significantly increased secretion of IL-1b, whereas
those with the H67R mutation showed a trend toward decreased
IL-1b secretion (Fig 3, B). In LPS-induced R157X macrophages,
quantitative real-time RT-PCR revealed higher expression of pro–
IL-1b compared with that seen in control subjects also at the
mRNA level, whereas no difference in NLRP3 expression was
observed (see Fig E6 in this article’s Online Repository at
www.jacionline.org).

To study the effects of the mutations further, we constructed
Flp-In T-REx 293 cell lines stably expressing WT or mutant
p50/p105 under a tetracycline-inducible promoter. Equal
expression of WT and missense constructs was confirmed by
using WB (Fig 3, C), whereas expression of the truncated
R157X mutant protein was only detected in transiently
transfected cells after a long exposure time (see Fig E7 in
this article’s Online Repository at www.jacionline.org).
Despite this, overexpression of this construct caused a marked
reduction in endogenous p50 and p105, an effect alleviated by
treatment with proteasome inhibitors (Fig 3, D and E, and see
Fig E8 in this article’s Online Repository at www.jacionline.
org). In contrast, expression of the A156Sfs-NFKB1 mutant
published by Fliegauf et al3 affected only the level of endoge-
nous p105 and not that of p50.
H67R and R157X mutants show reduced NF-kB
activation

The p50/p105-Flp-In cell lines were transiently transfected
with an NF-kB–responsive firefly luciferase reporter and a
constitutively active Renilla luciferase control reporter to test
the effect of the NFKB1 mutations on NF-kB transcriptional
activity and to control for cell viability, respectively. Reporter
activities were measured after induction of signaling with TNF.
Overexpression of the WT and I553M constructs increased
NF-kB reporter activity comparably, whereas overexpression of
the H67R mutant did not increase reporter activity to greater
than the signal from the endogenous protein, indicating loss of
function (Fig 3, F). As expected, overexpression of the R157X
stop-gain mutant also did not increase signaling. Transient
transfections of WT, H67R, and I553M expression constructs
into HEK293 cells produced similar results but, interestingly,
also decreased cell viability compared with the WT
construct (see Fig E9 in this article’s Online Repository at
www.jacionline.org).
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NFKB1 mutants exhibit altered protein-protein

interactions
The p50/p105-Flp-In cell lines were used tomap protein-protein

interactions of mutant and WT p50/p105 by means of affinity
purification mass spectrometry (Fig 4 and see Fig E10 and Table
E7 in this article’s Online Repository at www.jacionline.org).
This revealed 17 high-confidence protein-protein interactions, of
which 2, Myc-associated zinc finger protein (MAZ), and IlvB-
like protein (ILVBL), were previously undescribed. All interac-
tions were verified by using BioID, which detected an additional
transient signal transducer and activator of transcription 3 interac-
tion. Both missense mutants showed an altered interaction profile
both without and with TNF stimulation. Notably, in unstimulated
cells we observed decreased affinity between the H67R mutant

http://www.jacionline.org
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and RelB (0.26) and between the I553Mmutant and TNIP1 (0.37).
Moreover, we detected increased affinity between the I553M
mutant and IkBε (1.61) and between the H67R mutant and
NEMO (2.2). As expected, activation of the NF-kB pathway
with TNF resulted in loss of interactions between p50/p105 and
the upstream proteins IkBa, NEMO, and IKKa both in WT and
the missense mutants (see Fig E11 in this article’s Online Reposi-
tory at www.jacionline.org). Although interaction of p50/p105
with RelB increased in response to pathway activation in WT
(1.63) and the H67R mutant (1.28), no change in RelB affinity
was observed with the I553M mutant. With the R157X mutant,
similar to A156Sfs-NFKB1 mutant, only very few peptides of
the protein were present, and only an interaction with MAZ was
detected (see Table E8 in this article’s Online Repository at
www.jacionline.org). From PBMCs of patients with R157Xmuta-
tion, only N-terminal peptides were detected from antibody-based

http://www.jacionline.org
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p50/p105 purifications (see Fig E12 in this article’s Online Repos-
itory at www.jacionline.org).

H67R mutant displays reduced nuclear localization
We asked whether increased binding between NEMO and the

H67R mutant would affect p50 nuclear localization. By using the
p50/p105-Flp-In cell lines, we performed immunofluorescence
staining and microscopy after induction with TNF (10 or 25 ng/mL
for 40 minutes). An anti-hemagglutinin antibody was used to
visualize only tagged proteins.Although addition of 25 ng/mLTNF
caused a 1.5- to 2-fold increase in nuclear localization in all cell
lines, 10 ng/mL TNF induced nuclear localization of the WT and
I553Mproteins, but not of theH67Rmutant, suggesting a reduction
in efficiency of nuclear localization by this mutant (Fig 5).

I553M mutation alters posttranslational processing

of p105
To study whether the I553M mutation affects the stability of

p105, we performed a TNF titration on the mutant cell lines (Fig
6, A). In unstimulated conditions, p105 and p50 were expressed
equally. However, with increasing TNF concentrations, the
amount of I553M-p105 decreased more than that of WT or
H67R-p105. Because degradation of p105 during pathway induc-
tion by TNF is mediated by phosphorylation,35,36 we tested
whether the I553M mutation alters p105 phosphorylation.

To assess this, we identified and quantified phosphopeptides
from the affinity purification mass spectrometry data of WT and
mutant p50/p105 using the Andromeda search engine combined
with MaxQuant. Two peptides of p105 with a total of 3 serine
residues (S893, S903, and S907) were identified and quantified in
all replicates (see Table E9 in this article’s Online Repository at
www.jacionline.org). The I553M mutation caused a significant
decrease in S893 and S907 phosphorylation (Fig 6, B). The first
peptide (amino acids 878-896) was phosphorylated at serine
893, and the second peptide (amino acids 897-912) was found
to be either singly phosphorylated at serine 907 or double phos-
phorylated at serines 907 and 903. Compared with the WT pro-
tein, the phosphorylation status of both S893 and S907 was
significantly decreased (with a relative amount of phosphorylated
to unphosphorylated peptide at 0.65 and 0.67, respectively) in the
I553M mutant.

http://www.jacionline.org
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FIG 6. The I553M variant affects the stability and phosphorylation of p105. A, WT and mutant (H67R and

I553M) p50/p105-expressing cells were treated with TNF gradient and analyzed by means of WB with

anti-p50/p105 antibody to study the effect of TNF induction on p105 stability. a-Tubulin antibody was

used as a loading control. B, Differences in phosphorylation levels of 2 phosphopeptides (878-896 and

897-912) from the C-terminus of p105 identified by mass spectrometric analyses. Values shown in boxes

denote the ratio of phosphorylated to unphosphorylated peptide normalized to WT.
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DISCUSSION
In this study we identified heterozygous NFKB1mutations in 3

families presenting with varying combinations of antibody defi-
ciency, Behçet-like disease, and life-threatening postoperative
complications of autoinflammatory origin. Furthermore, we
showed that these mutations functionally affect the NF-kB sub-
units p50 and p105.

Haploinsufficiency of p50 was recently shown to cause common
variable immunodeficiency, but none of the previously reported
cases had autoinflammatory symptoms.3,37 However, an immuno-
dysregulatory phenotype is well demonstrated in p50/p105-
deficient mousemodels.NFKB12/2mice havemultiorgan autoim-
munity and show increased IL-6 production, activation of autoreac-
tive CD81 T cells, and defective maturation of immunoregulatory
natural T lymphocytes.38-42 Similar to some of our patients, the
mice produce increased amounts of the proinflammatory cytokines
IFN-g and TNF.43-45 p50 regulates TNF production, and TNF con-
trols intestinal inflammation and epithelial cell turnover in the co-
lon.44,46,47 Hence increased TNF production might contribute to
the gastrointestinal symptoms in our patients. TNF-induced
apoptosis and necrosis could also contribute to inflammatory symp-
toms by compromisingmucosal barrier function and increasing tis-
sue degeneration at inflamed sites.48-50 Defects in other molecules
of theNF-kBsignalingpathwayalso lead to inflammation inhuman
subjects: NEMO deficiency can cause systemic inflammation,
enterocolitis, and Behçet disease.51-54 Moreover, haploinsuffi-
ciency of A20, a negative regulator of NF-kB signaling, causes
Behçet-like symptoms, and IkBa mutations can present with
noninfectious inflammation.9,55 Hence autoinflammatory symp-
toms in patients with NFKB1 mutations are not surprising.

Phenotypes of patients with the now reported NFKB1 muta-
tions varied between subjects, but variable disease severity has
also been reported by others.37 Genetic factors, such as common
variants in immunologically relevant genes, and environmental
effects, such as pathogens or immunomodulatory treatments,
are likely partially responsible for these differences. Patient age
can also factor in because our young patients had only mild dis-
ease, and most affected carriers were asymptomatic as children.
Indeed, animal age affects the phenotype and immune cell
numbers also in NFKB12/2 mice.38

In addition, we detected molecular differences between the
now identified and previously described NFKB1 mutations.3 In
our cell model the R157X mutant induced degradation of the
endogenous p50/p105 through a proteasome-dependent mecha-
nism, whereas the A156Sfs mutant did not. The binding of mutant
R157X protein to nascent WT p50/p105 could lead to misfolding
and degradation of both peptides because dimerization of p50 and
p105 is required for their stabilization and folding.56 Despite the
severe insufficiency of p50/p105, only some of the R157X variant
carriers had hyperinflammatory reactions, and none had antibody



FIG 7. Suggested mechanisms of signaling disturbance by NFKB1 missense mutations. In normal condi-

tions p50 forms both proinflammatory heterodimers and anti-inflammatory homodimers. The R157X mu-

tation reduces the amount and the H67R mutation reduces the activity of both types of dimers, likely

dysregulating both initiation and termination of proinflammatory gene transcription. The I553M mutant

might increase p50 concentration in the nucleus because p105 is an important regulator of p50 homo-

dimers. In addition, reduction in p105 can increase signaling through extracellular signal-regulated kinase

(ERK) because p105 regulates mitogen-activated protein kinase (MAPK)/ERK signaling through inhibition of

tumor progression locus 2. The inhibited MAPK-ERK pathway downregulates overall NF-kB signaling.
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deficiency. Although p50 is necessary for immunoglobulin diver-
sification in mice,33,57 compensatory mechanisms might exist to
maintain normal antibody production in cases of p50 insuffi-
ciency in human subjects.

The R157X mutation carriers had life-threatening postopera-
tive complications. Macrophages derived from these patients
exhibited increased inflammasome activation and IL-1b secre-
tion. Priming of the NLRP3 inflammasome in macrophages is
mediated by NF-kB, but the NF-kB/p62/mitophagy pathway can
also restrict the secretion of IL-1b and consequently attenuate
sterile inflammation.58,59 Hence p50 deficiency in macrophages
can promote IL-1b production and lead to tissue inflammation.
In addition, increased neutrophil recruitment was detected both
in NFKB12/2 mice and in carriers of the R157X mutation during
inflammatory episodes, which exacerbates disease and contrib-
utes to tissue damage.60-62

The H67Rmutation impaired p50 transcriptional activity. p50 is
bound byNEMO, which keeps p50 in the cytoplasm and releases it
to enter the nucleus on NF-kB activation. Our data suggest
increased binding between the mutant p50 and NEMO, resulting
in impairment of p50 nuclear entry. The disease could be caused by
a diminished pool of transcriptionally active p50 heterodimers (Fig
7), as has been seen in previously reported cases of p50 haploinsuf-
ficiency. However, autoinflammatory symptoms could also be due
to reduced numbers of p50:p50 homodimers, which normally curb
inflammatory reactions by repressing inflammatory and inducing
anti-inflammatory gene expression.15,63,64

Patients with the I553M mutation had common variable
immunodeficiency, phenotypically resembling Fliegauf et al’s
cohort.3 In contrast to their data, we did not detect changes in p50
quantity or activity. Instead, we observed decreased phosphoryla-
tion and increased degradation of I553M-p105. p105 degradation
is induced by TNF and leads to release of p50 and other NF-kB
transcription factors. Thus a decrease in p105 can affect activation
or termination of downstream signaling.65 In mice loss of p105 is
sufficient to cause inflammation and infection susceptibility.34

Additionally, we detected altered protein interaction profiles
between WT and mutant p105. Loss of interaction between
I553M-p105 and IkBε on the NF-kB pathway activation might
contribute to the phenotype because hematopoietic IkBε
regulates chronic inflammation.66 Both I553M andH67Rmutants
also showed reduced interactions with RelB. Expression of RelB
is activated by canonical NF-kB signaling, and the lost
interaction might merely indicate reduced canonical pathway
activation in mutant cells.67 In response to activation of the
nonclassical NF-kB pathway, RelB dimerizes with p52
encoded by NFKB2, mutations that cause common variable
immunodeficiency.6 By contrast, functions of p50:RelB
dimers are largely uncharted, but in dendritic cells and
macrophages they regulate expression and activation of certain
anti-inflammatory genes.68-70

In conclusion, we broaden the phenotype ofNFKB1mutations,
showing that certain patients can have autoinflammatory
disease in combination with antibody deficiency. Increased
production of TNF and IL-1b during autoinflammatory episodes
suggests a potential therapeutic venue for IL-1 and TNF
inhibitors in severe cases. Moreover, we show that mutations
affecting only p105 are sufficient to cause hypogammaglobulin-
emia and autoimmunity. These results highlight the importance
of p50/p105 for proper immune function and control of
inflammation.
We thank the personnel at the Hematology Research Unit Helsinki and
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for Molecular Medicine Finland (FIMM). Image analysis of immunofluores-
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Key messages

d In addition to antibody deficiency, mutations in NFKB1
cause autoinflammatory symptoms resembling Behçet
disease and inflammatory gastrointestinal diseases and
might lead to severe postoperative complications.

d Mutations that disrupt the function of either p50 or p105
can dysregulate NF-kB signaling and result in autosomal
dominant disease.

d The autoinflammatory symptoms are mediated by IL-1b–
dependent and possibly TNF-dependent mechanisms, sug-
gesting a potential therapeutic venue for IL-1 and TNF
inhibitors in severe cases.
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